
Generalizing	this	Design

CS	5010	Program	Design	Paradigms
"Bootcamp"
Lesson	10.5

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Problems	with	our	design	so	far

• It	used	to	be	that	WorldState%	created	new	
widgets	by	trapping	keystrokes	in	its	after-key-
event	method.

• But	what	if	we	want	to	add	new	objects	by	some	
other	means	(e.g.	pushing	a	button	on	the	
screen)?

• And	having	widget	creation	handled	by	the	World	
means	the	World	has	to	know	both	about	
distributing	messages	AND	about	keystrokes
– that's	a	violation	of	one	task	per	function.

2

Solving	this	problem

• We'll	do	this	in	three	steps:
1. We'll	make	the	world	stateful,	too
2. We'll	give	it	methods	for	adding	widgets	and	

stateful widgets.
3. Then	we'll	create	a	ball	factory	to	create	balls	

and	add	them	to	the	world.
• the	factory	will	know	about	the	wall,	so	the	balls	it	

creates	will	be	equipped	with	knowledge	about	the	
wall.

3

StatefulWorld<%>
;; The World implements the StatefulWorld<%> interface

(define StatefulWorld<%>
(interface ()

; -> Void
; GIVEN: no arguments
; EFFECT: updates this world to its state after a tick
after-tick

; Integer Integer MouseEvent-> Void
; GIVEN: a location
; EFFECT: updates this world to the state it should be in
; following the given mouse event at the given location.
after-mouse-event

; KeyEvent -> Void
; GIVEN: a key event
; EFFECT: updates this world to the state it should be in
; following the given key event
after-key-event

; -> Scene
; GIVEN: a scene
; RETURNS: a scene that depicts this World
to-scene

))

4

This	is	just	like	what	
we	did	before:	We	

change	the	contracts	
to	return	Void,	and	

replace	RETURNS	with	
EFFECT	in	the	purpose	

statements.

World%
; ListOfWidget ListOfSWidget -> World
(define (make-world-state objs sobjs)
(new World% [objs objs][sobjs sobjs]))

(define World%
(class* object% (StatefulWorld<%>)

(init-field objs) ; ListOfWidget
(init-field sobjs) ; ListOfSWidget

(super-new)

;; after-tick : -> Void
;; Use map on the Widgets in this World; use for-each on the
;; stateful widgets

(define/public (after-tick)
(begin
(for-each
(lambda (obj) (send obj after-tick))
sobjs)

(set! objs
(map
(lambda (obj) (send obj after-tick))
objs))))

5

In	keeping	with	Lesson	 10.3,	
I've	changed	the	name	of	this	
class	of	WorldState%	to	
World%,	 since	 it	models	an	
actual	world,	not	merely	the	
mathematical	value	that	is	its	
state.

We	replace	each	call	to	make-world-
state	or	new	with	a	suitable	 set!,	just	

as	in	the	preceding	lesson.

We	need	to	modify	our	call	to	big-bang
; run : PosReal -> World
; GIVEN: a frame rate, in secs/tick
; EFFECT: runs an initial world at the given frame rate
; RETURNS: the world in its final state
(define (run rate)
(big-bang (initial-world)
(on-tick
(lambda (w) (begin (send w after-tick) w))
rate)

(on-draw
(lambda (w) (send w to-scene)))

(on-key
(lambda (w kev)
(begin
(send w after-key-event kev)
w)))

(on-mouse
(lambda (w mx my mev)
(begin
(send w after-mouse-event mx my mev)
w)))))

6

The	methods	of	the	world	
used	to	return	a	new	
world,	but	not	any	more.		
Big-bang still	expects	its	
handlers	to	return	a	
world,	 so	we	do	this	
explicitly	by	writing
(begin	(send	w	...)	w)

We	still	initialize	the	world	in	the	same	
way

;; initial-world : -> World
;; RETURNS: a world with a wall and a ball that knows about
;; the wall.
(define (initial-world)

(local
((define the-wall (new Wall%))
(define the-ball (new Ball% [w the-wall])))

(make-world-state
(list the-ball)
(list the-wall))))

7

Now	let's	add	a	method	to	add	new	
widgets	to	the	world

First	we	add	it	to	the	interface	World<%>	:

; Widget -> Void
; GIVEN: A widget
; EFFECT: adds the given widget to the world
add-widget

; SWidget -> Void
; GIVEN: A stateful widget
; EFFECT: adds the given widget to the world
add-stateful-widget

8

And	the	method	definitions:

(define/public (add-widget w)

(set! objs (cons w objs)))

(define/public (add-stateful-widget w)
(set! sobjs (cons w sobjs)))

9

Now	we	can	build	a	ball	factory
;; The BallFactory% class

;; accepts "b" key events and adds them to the world.
;; gets the world as an init-field

(define BallFactory%
(class* object% (SWidget<%>)

(init-field world) ; the world to which the factory adds balls
(init-field wall) ; the wall that the new balls should bounce

; off of.

(super-new)

(define/public (after-key-event kev)
(cond
[(key=? kev "b")
(send world add-widget (new Ball% [w wall]))]))

;; the Ball Factory has no other behavior. Return nonsense values for Void,
;; to aid in debugging.

(define/public (after-tick) 15)
(define/public (after-button-down mx my) 16)
(define/public (after-button-up mx my) 17)
(define/public (after-drag mx my) 18)
(define/public (add-to-scene s) s)

))

10

The	factory	receives	key	
events	from	the	world.		On	

each	"b",	 it	creates	a	new	ball,	
and	then	passes	it	to	the	

world	as	an	argument	 to	add-
widget.	

And	let's	initialize	the	system
;; initial-world : -> WorldState
;; RETURNS: a world with a wall, a ball, and a factory
(define (initial-world)

(local
((define the-wall (new Wall%))
(define the-ball (new Ball% [w the-wall]))
(define the-world
(make-world-state (list the-ball) (list the-wall)))

(define the-factory
(new BallFactory% [wall the-wall][world the-world])))

(begin
(send the-world add-stateful-widget the-factory)
the-world)))

11

1. Create	a	wall
2. Create	a	ball	that	knows	about	 the	ball
3. Create	a	world	with	the	ball	and	the	wall
4. Create	a	factory	that	knows	about	the	wall	and	the	

world
5. Add	 the	factory	to	the	world
6. Return	the	resulting	world

We	just	created	a	cyclic	structure!

• Notice:	the	factory	needed	to	know	about	the	
world,	and	the	world	needed	to	know	about	
the	factory.

• This	is	a	cyclic structure.
• You	can't	build	a	cyclic	structure	without	state.

12

Wasn't	that	fun?

• Go	play	with	10-4-ball-factory.rkt

13

Key	Points	for	Lesson	10.5

• We	applied	the	iterative	design	strategy	in	an	
object-oriented	system

• At	every	step,	we	first	designed	the	interface,	
so	we'd	know	what	our	methods	were	
supposed	to	do.

• Then	we	designed	the	methods.
• We	needed	a	cyclic	structure,	so	both	the	
world	and	the	factory	needed	to	be	stateful.	

14

Next	Steps

• Study	10-4-ball-factory.rkt	in	the	Examples	
folder.

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Go	on	to	the	next	lesson.

15

