Generalizing this Design

CS 5010 Program Design Paradigms
"Bootcamp”
Lesson 10.5

@ @ @ © Mitchell Wand, 2012-2014
s 1 his work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




Problems with our design so far

 |tused to be that WorldState% created new
widgets by trapping keystrokes in its after-key-
event method.

* But what if we want to add new objects by some
other means (e.g. pushing a button on the

screen)?

* And having widget creation handled by the World

means the World has to know both about
distributing messages AND about keystrokes

— that's a violation of one task per function.




Solving this problem

 We'll do this in three steps:
1. We'll make the world stateful, too

2. We'll give it methods for adding widgets and
stateful widgets.

3. Then we'll create a ball factory to create balls
and add them to the world.

 the factory will know about the wall, so the balls it

creates will be equipped with knowledge about the
wall.




StatefulWorld<%>

35 The World implements the StatefulWorld<%> interface

(define StatefulWorld<%>
(interface ()

;3 -> Void
5 GIVEN: no arguments

; EFFECT: updates this world to its state after a tick

after-tick

; Integer Integer MouseEvent-> Void This iSjUSt like what
; GIVEN: a location . .

; EFFECT: updates this world to the state it should be in we dld before. We

; following the given mouse event at the given location.
after-mouse-event

change the contracts

, to return Void, and
; KeyEvent -> Void

; GIVEN: a key event replace RETURNS with
; EFFECT: updates this world to the state it should be in .
; following the given key event EFFECT in the purpose

after-key-event

statements.

3 -> Scene
3 GIVEN: a scene

; RETURNS: a scene that depicts this World
to-scene

)



World%

; ListOfWidget ListOfSWidget -> World
(define (make-world-state objs sobjs)
(new World% [objs objs][sobjs sobjs]))

In keeping with Lesson 10.3,
I've changed the name of this

(dt(efine l::oriq% T EEE class of WorldState% to
class* objec {F—__5—E?UIW6FId?%7)—————————_____________________________ . .
World%, since it models an

(init-field objs) ; ListOfWidget
(init-field sobjs) ; ListOfSWidget

(super-new)

;53 after-tick : -> Void
55 Use map on the Widgets in this World; use for-each on the
;5 stateful widgets

(define/public (after-tick)
(begin
(for-each
(lambda (obj) (send obj after-tick))
sobjs)

actual world, not merely the
mathematical value that is its
state.

(set! objs <—
(map
(lambda (obj) (send obj after-tick))
objs))))

We replace each call to make-world-
state or new with asuitable set!, just
asin the preceding lesson.




We need to modify our call to big-bang

run : PosReal -> World

5
3 GIVEN: a frame rate, in secs/tick
;5 EFFECT: runs an initial world at the given frame rate
;3 RETURNS: the world in its final state
(define (run rate)
(big-bang (initial-world)
(on-tick
(lambda (w) (begin (send w after-tick) w)) The methods of the world
rate) used to return a new
(on-draw
(lambda (w) (send w to-scene))) world, but not any more.
(on-key Big-bang still expectsits
(lambda (w kev)
: handlers to return a
(begin .
(send w after-key-event kev) world, so we do this
w))) explicitly by writing
(on-mouse .
(lambda (w mx my mev) (begin (send w ...) w)
(begin

(send w after-mouse-event mx my mev)

w)))))




We still initialize the world in the same
way

33 initial-world : -> World
33 RETURNS: a world with a wall and a ball that knows about
;5 the wall.
(define (initial-world)
(local
((define the-wall (new Wall%))
(define the-ball (new Ball% [w the-wall])))
(make-world-state
(1list the-ball)
(list the-wall))))




Now let's add a method to add new
widgets to the world

First we add it to the interface World<%> :

;5 Widget -> Void

; GIVEN: A widget

5 EFFECT: adds the given widget to the world
add-widget

; SWidget -> Void

5 GIVEN: A stateful widget

;5 EFFECT: adds the given widget to the world
add-stateful-widget




And the method definitions:

(define/public (add-widget w)
(set! objs (cons w objs)))

(define/public (add-stateful-widget w)
(set! sobjs (cons w sobjs)))




Now we can build a ball factory

;5 The BallFactory% class

;5 accepts "b" key events and adds them to the world.
;5 gets the world as an init-field

(define BallFactory’%
(class* object% (SWidget<%>)

(init-field world) ; the world to which the factory adds balls
(init-field wall) ; the wall that the new balls should bounce
; off of.

(super-new)

(define/public (after-key-event kev)
(cond
[(key=? kev "b")
(send world add-widget (new Ball% [w wall]))]))

The factory receives key
events from the world. On
each "b", it creates a new ball,
and then passes it to the
world as an argument to add-
widget.

;5 the Ball Factory has no other behavior. Return nonsense values for Void,

;5 to aid in debugging.

(define/public (after-tick) 15)
(define/public (after-button-down mx my) 16)
(define/public (after-button-up mx my) 17)
(define/public (after-drag mx my) 18)
(define/public (add-to-scene s) s)

)

10




And let's initialize the system

33 initial-world : -> WorldState
55 RETURNS: a world with a wall, a ball, and a factory
(define (initial-world)
(local
((define the-wall (new Wall%))
(define the-ball (new Ball% [w the-wall]))
(define the-world
(make-world-state (list the-ball) (list the-wall)))
(define the-factory
(new BallFactory% [wall the-wall][world the-world])))
(begin
(send the-world add-stateful-widget the-factory)

the-world)))
Create a wall

Create a ball that knows about the ball

Create a world with the ball and the wall

Create a factory that knows about the wall and the
world

Add the factory to the world

6. Return the resulting world

=

c




We just created a cyclic structure!

* Notice: the factory needed to know about the
world, and the world needed to know about

the factory.
* This is a cyclic structure.
* You can't build a cyclic structure without state.

12



Wasn't that fun?

* Go play with 10-4-ball-factory.rkt

13




Key Points for Lesson 10.5

We applied the iterative design strategy in an
object-oriented system

At every step, we first designed the interface,
so we'd know what our methods were
supposed to do.

Then we designed the methods.

We needed a cyclic structure, so both the
world and the factory needed to be stateful.




Next Steps

e Study 10-4-ball-factory.rkt in the Examples
folder.

* |f you have questions about this lesson, ask
them on the Discussion Board

e Goon tothe nextlesson.

15




